

 SpaceOps COMMITTEE QUARTERLY

__

SOCQ5 – 3Q2011 Back to Products

ARTICLE 3
V.20 September, 2011

Title
Promising results from the customization of the Commanding and Monitoring
Frameworks of INPE Satellite Control

Author(s)
Luciana S. Cardoso (INPE), <luciana@dss.inpe.br>

Paulo E. Cardoso (INPE), <paulinho@dss.inpe.br>
Joaquim P. Barreto(INPE), <joaquim@dss.inpe.br>

Correspondent
Mauricio G. V. Ferreira (INPE), <mauricio@ccs.inpe.br>

Technical Coordinator and Leading Reviewer
Patrick ("Pat") Hogan (CSA), <patrick.hogan@asc-csa.gc.ca>

Invited Reviewer
Joachim Kehr (DLR), <JoachimKehr@aol.com>

Editorial Supervisor
Eduardo W. Bergamini (INPE), <e.w.bergamini@uol.com.br>

Editorial Support
Síntique R. dos Santos (INPE), <secretaria.rme@inpe.br>
Helen Joyce Aparecida (INPE), <secretaria.rme@inpe.br>

Website Editorial Support
Megan Scheidt (AIAA/SpaceOps), <MeganS@aiaa.org>

Other information
<www.inpe.br>

http://www.spaceops.org/content.cfm?pageid=50
http://www.spaceops.org/content.cfm?pageid=50
mailto:luciana@dss.inpe.br
mailto:patrick.hogan@asc-csa.gc.ca
mailto:JoachimKehr@aol.com
mailto:secretaria.rme@inpe.br
mailto:secretaria.rme@inpe.br
mailto:MeganS@aiaa.org

American Institute of Aeronautics and Astronautics

1

Promising results from the customization of the
Commanding and Monitoring Frameworks of

INPE Satellite Control

Luciana S. Cardoso, Paulo E. Cardoso , Joaquim P. Barreto

National Institute for Space Research – INPE, São José dos Campos, Brazil

The Commanding and Monitoring frameworks are two fundamental stones of the
SATellite Control System (SATCS) architecture at the National Institute for Space
Research (INPE). They consist of a set of integrated classes which provide a
pre-defined base infrastructure to support the development of applications for the
remote control and monitoring domains. These domains include controlling and
monitoring functions for both satellites and ground stations. These frameworks
permit creating applications that could achieve a high level of software reuse with
a lower development cost. In order to reach these targets, the following concepts
have been widely used in the design: design-patterns, component-base
development, and metadata. Recently, some software products have been
created using the two frameworks and the promising results from their
developing processes show that the objectives of maximizing reuse and
decreasing costs have been achieved. In a short time while using a small group
of developers two software applications were developed for the team that was
testing the engineering model of the fourth China Brazil Earth Research Satellite
(CBERS3): TMTCAIT (kernel functions for telecommand and telemetry
processing) and CBERS3AOCSTC (decoding of AOCS telecommand binary
files). The application DSSCOP1CTX to study the use of the CCSDS COP1
protocol for sending telecommands through the CORTEX baseband equipment
has also been developed. The use of the frameworks and metadata were not the
only reasons, taking into account the small staff and short deadlines, for the
success in implementing these products. The reuse of the testing infrastructure
of the frameworks and its validation process were also decisive. They have been
created to validate the frameworks and had an important role in decreasing the
effort for validating these three products and proved to be another important
dimension of reuse.

Introduction

The Commanding and Monitoring object oriented frameworks were developed based on
the architectural templates and design solutions proposed by SATellite Control System
(SATCS) 1. They are a set of integrated classes that provides a pre-defined base
infrastructure to support the development of applications for the remote control and
monitoring domains. These domains include control and monitoring functions for both
satellites and ground stations.

American Institute of Aeronautics and Astronautics

2

The design of these frameworks took into account the common and variable
requirements that can occur among different missions in order to make it easier to
create the monitoring & control applications required for each specific mission. Using
design patterns brings flexibility to change the code to comply with new requirements,
since the code is designed to accept changes, thus saving time and reducing future
development costs. Breaking down the frameworks in to modules makes it easier to
change a specific part of the problem domains because the change would be
concentrated in a specific module. By using metadata it is possible to reduce drastically,
or, in some cases, even to eliminate the need to adapt the application codes to comply
with new requirements. These frameworks allow creating applications that could
achieve a high level of software reuse with lower development costs. To reach these
targets, the following concepts have been widely used in the design: design-patterns3,
component-base development4, and metadata5.

Promising results from the customization of these frameworks have been obtained by
the Ground System Development Division (DSS) team as three software products were
developed in a short time while using a small group of people showing that the
objectives of maximizing reuse and decreasing costs have been achieved.

This paper presents, in section II, an overview of the logical architecture of the
Commanding and Monitoring frameworks and also the design solutions adopted to
achieve a high level on the reusability of their elements. Other advantages of using
frameworks are the reuse of testing infrastructure and the validation process which had
an important role in decreasing the effort to validate the created products. Section III
shows the test process adopted. The fourth, fifth and sixth sections describe the
software applications which were developed using the frameworks: TMTCAIT (functions
kernel of telecommand and telemetry processing), CBERS3AOCSTC (decoder of
CBERS3 AOCS telecommand binary files) and DSSCOP1CTX (tool for helping the
study of CCSDS COP1 protocol). The conclusion of this work is presented in section
VII.

I. Commanding and Monitoring Frameworks

This section presents the overview of Commanding and Monitoring frameworks2 which
were designed to comply with the operation requirements associated with the telemetry,
telecommand and ground station monitoring & control functions.

The Commanding framework covers functions of preparing, validating, sending,
verifying and logging control messages (commands). This applies to any commandable
entity like satellite (telecommand) and ground station (remote command) for which
command messages can be defined.

The Monitoring framework covers all monitoring functions in which all data, regardless
of the source (telemetry or remote monitoring), can be extracted, calibrated, subjected
to a range of monitoring checks, archived in a Historic database, and displayed. It is
also able to play back and display the data stored in the Historic database.

American Institute of Aeronautics and Astronautics

3

CMDGSComm

CMDAutComm

Subsystem

EndtoEndComm

Commands

Transmission

TXController

TXUserInterface

Communication

Problem Domain

MONGSComm

ProcParamServer

Historic

VisParam

ProcParam

Communication

Problem

Domain
Playback

MONAutComm

CMDCommMONComm

Commanding Monitoring

S

U

P

P

O

R

T

C

O

M

P

O

N

E

N

T

Archiving&Retrieving Services

Persistence

User Viewer

Figure 1. Commanding and Monitoring Framewoks Logical Architecture.

Figure 1 presents the logical architecture of the two frameworks where their functions
are organized in four layers: Persistence, Archiving&Retrieving Services, Subsystem
and UserView and an independent component, Support, which is responsible for
providing support services for the first three layers.

The Persistence layer includes two databases: mission Historic data and Operation data
(mission and software parameters). Metadata was used in the design of the Operation
database to increase the flexibility to comply with the specific data structures
requirements of each mission.

The Archiving&Retrieving Services layer makes it possible to design the subsystem
independently from the implementation of the Persistence layer databases, by providing
services for storing data and retrieving data from the Operation and Historic databases.

The functions related to the role of each subsystem, Commanding and Monitoring, are
included in the Subsystem layer. Figure 1 also presents the logical modules that the
problem domain of the two subsystems were brokendown in to.

The UserView layer includes only functions related to the interaction with the subsystem
users: presentation of data managed by the Subsystem layer modules and activation,
by the user, of services provided by these modules. The design of this layer produces
one or more modules to comply with the subsystem user interface requirements and
most of the time each module corresponds to one executable application with a
graphical user interface.

American Institute of Aeronautics and Astronautics

4

Through the combination of these two frameworks, it is possible to create applications
to control a remote entity in a manual, automatic or supervised mode. Requests for
connection to a ground station, transmission of commands and others can be performed
manually by an operator, through the application user interfaces (the TXUserInterface
and VisParam modules), or automatically by the CMDAutComm and MONAutComm
modules.

Whichever is the operation mode of the Commanding framework, all requests for
transmitting commands are inserted in a queue of commands to be transmitted. The
TXController module is responsible for controlling this queue and notifying the user
interface whenever there is a change in the queue or in the execution state of a
command. Depending on the operation mode, the commands are transmitted manually
by an operator or automatically. The Transmission module controls the command
transmission, by checking the range values of possible monitoring parameters
associated with each command (pre and post verification), and notifies the Monitoring
framework, due to command execution, about changes in the expected state of a
remote entity. The communication between Commanding framework and ground
stations are performed by the CMDGSComm module.

On the other hand, monitoring packets sent by a satellite (telemetry), through a ground
station, or sent directly by a ground station (ground station remote monitoring) are
received by the MONGSComm module. This module allows connections to one or more
ground stations, storing the received packets in the Historic database and broadcasting
them to several computers. Depending on the computer where it is installed, the
MONGSComm module also plays the role of a client that receives the packets that were
broadcasted. The packets are processed by the ProcParam module, whose functions
includes: obtaining all monitoring parameter values and checking these values using
monitoring laws. The ProcParam module also makes available these values and lists of
parameters with values out of normal ranges to the VisParam module. Besides
presenting the current values and processing states of the monitoring parameters, the
VisParam module is also in charge of presenting the command queue to the user. Other
features of this module are that it can be configured to present both real time and
playback data. The only difference is that in the playback mode the ProcParam module
processes packets retrieved from the Historic database, through the Historic module
services, and not real time packets received through the MONGSComm module. Other
SATCS subsystems can interface the Monitoring framework through the
ProcParamServer module to receive parameters values extracted from Historic data.
The ProcParamServer module is implemented as a server that receives requests from
the SATCS subsystems and uses the ProcParam and Historic modules to provide the
data these subsystems have ask for.

All communication interfaces between the Commanding and Monitoring frameworks are
placed in the MONComm and CMDComm modules. The Commanding framework: (i)
sends information about expected change in the state of a remote entity, due to
command executions, so that the Monitoring framework can reconfigure the monitoring
laws of parameters associated with these commands; (ii) receives parameter current
values and uses them to check the pre and post verification rules associated with the

American Institute of Aeronautics and Astronautics

5

transmission and execution of a command and; (iii) sends information about the
command queue and its updates to allow the users to monitor it.

The Commands and EndtoEndComm modules were designed as independent
components that can be used by any subsystem or system that needs to code/decode
the application data of a command and to pack/unpack the protocol data layers that can
exist to allow the communication with remote entities (ground-board protocol and/or
ground node to ground node protocol).

The design of the Commands, EndtoEndComm, CMDGSComm, MONGSComm and
ProcParam modules makes use of the Data Stream module2 of the Support component
to minimize the need of changing the code to comply with requirements of mission
specific monitoring and command data structures.

An adequate configuration of these frameworks allows creating software products for
different mission phases.

Prepare

acceptance

tests

Subsystem

Requirement

Definition

Prepare

 integration

tests

Subsystem

Preliminary

Design

Prepare

white-boxes

testsSubsystem

Detailed Design

Coding details

Subsystem

Validation

Tests

Tested Modules

Accepted

Subsystem

Modules Tests

Subsystem

Integration

Tests

Integrated Subsystem

 Subsystem Level

Unit Tests

Tested Unit

(Safe Class)

compiled units

Figure 2. Framework Test Phase

II. Testing infrastructure and validation process

The test lifecycle adopted for validating the software products created from the
framework customization is the V-Model as shown in Figure 2. The planning of the tests
is performed at each phase of the development, in a top-down strategy. However, the
test execution and result reports are applied and generated respectively, in a bottom-up
fashion. The V&V process aims at achieving the maximum reuse of the testing tools and
the adoption of cost effective techniques in order to assure the required quality of

American Institute of Aeronautics and Astronautics

6

software products. The activities of the V&V process run in parallel to all phases of the
development process.

The adoption of different phases of tests in this process makes it easier, for each
framework customization, to reuse all the test tools developed (like drivers, stubs and
simulators) and all the test case sets prepared (procedures, input and output data).
Thus, the work of preparing the tests for a new framework customization concentrates
on the insertion of new test cases to validate the new requirements of the software
module/product to be developed. However, for a complete validation of the
customization it is necessary to apply not only the new test cases but also, in the case
of modified modules, the whole test suit previously prepared (regression testing).

Another advantage of this validation process is that each module has a validation phase
separated from the other modules and later on there is a validation phase to integrate
all these modules. In this way, to validate a new software product that require changes
on a subset of the frameworks modules, it is possible to test only the modified modules
and then apply the integration test cases to the affected modules. To adapt themselves
to this test process, the drivers developed for testing each module offer a means to
execute all services made available to the clients by that module. These services are
composed of the ones defined in the module interface class, implemented through the
Façade design pattern, plus call back services for handling asynchronous events
generated internally to that module, implemented by the Observer design pattern.

Another complex and important item of the testing infrastructure is the Operation
database. Since the frameworks use metadata intensively, in other words, a major part
of implementation depends on the data stored in the Operation database of each
system, a strategy to mitigate the work of inputting test data into the database was also
defined. Figure 3 illustrates this strategy. First, an Operation database instance is made
available to be edited. This instance includes data required by the framework
implementation (software configuration data) such as the set of event messages that
the framework can generate during its processing and the type of data contained in a
command. This kind of information is strictly connected to the existence of specific
code in the framework model that uses it.

American Institute of Aeronautics and Astronautics

7

SWConfig

Database

TSDBModulen

TSDBModule2

TSDBModule1

Configuration Data Independent Modules Integrated Modules

TSDBModulex

Test Database

Figure 3. Testing database instances

The first instance of the database is replicated initially for each module of the subsystem
that is independent from the other modules (leaf modules). Then a set of data is
prepared for the specific tests of these modules. If implementations of new
requirements are added to a module then the data to test this modification should be
inserted into the instance of the database of that module to allow the execution of these
new tests and reapplying the whole test plan of that module whenever it is necessary.

A module which makes use of the independent modules has its database instance
created from the initial instance (configuration) joined to the database instances of the
modules on which it depends. Besides that, whenever necessary, new data could be
added. To support this database management process a tool was developed to copy
the contents from one database instance to another, preserving their integrity rules.

The implementation of the first software product that allowed testing of the proposed
framework architecture was accomplished with the third China Brazil Earth Research
Satellite (CBERS2B) control and monitoring application (SATCS_TMTC_CBERS2B).
This application was chosen because the CBERS2B satellite was already being
controlled by another application and therefore it was possible to match the results
generated from both control systems. Also considering that after the completion of the
development there would be a basic TM/TC core already validated for new satellites
from the CBERS family. The results obtained from the tests of this product were
successfully compared with real data produced by the current CBERS2B control and
monitoring system.

Having, as the starting point, the frameworks modules implemented and validated, the
framework architecture was customized and validated by the first software product and
the existing test infrastructure, it becomes much easier to create new frameworks
customizations and validate these new products. Three software products, which are
described in upcoming sections, were developed in a short time using a small group of

American Institute of Aeronautics and Astronautics

8

developers, showing that the objectives of maximizing reuse and decreasing costs has
been successful.

III. TMTCAIT

The software product TMTCAIT is a kernel of functions for telemetry processing and
command transmission that was developed with the aim to allow commonality between
telemetry and telecommand systems used in satellite assembly and integration test
(AIT) as well as flight operation phases. The purpose was to develop or use different
graphic user interfaces for Operation and AIT systems but both using a single
processing kernel and the same Operation database.

CMDGSComm

Transmission

LMONCMDOCOE

Communication
Problem Domain

MONGSComm

ProcParamServer
ProcParam

Communication
Problem

Domain
CMDCommMONComm

Commanding Monitoring

User Viewer

Operation Historic

Command

EndtoEndComm

Subsystem

Figure 4. TMTCAIT Logical Architecture.

The TMTCAIT was created based on the customization of Commanding and Monitoring
frameworks. Figure 4 shows the logical architecture of the product along with User View
and Subsystem layers customized and the Operation and Historic databases. To
integrate the AIT applications with the command and monitoring frameworks it was
necessary to create a dynamic library (LMONCMDOCOE) using the C language. This
interface was created because the frameworks were developed using the C++ language
and the Microsoft Visual Studio 2008 IDE while the IDE of the AIT development team is
Lab Windows. This library uses the following modules from the frameworks: Command,
Transmission, MONComm, EndtoEndComm, CMDGSComm, CMDComm,
ProcParamServer, MONGSComm and ProcParam.

The extra coding necessary to create the TMTCAIT product was the development of the
LMONCMDOCOE library and changes to the CMDGSComm and MONGSComm
modules. For these two modules, classes were added to support the TM and TC
communication interface protocols of the baseband equipment used by the AIT team.
Two classes of these modules, implemented according to the Factory Design Pattern,

American Institute of Aeronautics and Astronautics

9

were modified in such a way to permit creating the objects of these new communication
classes.

To validate the first version of TMTCAIT, the Operation database was configured for the
CBERS3 satellite. Figure 5 shows the test environment created to validate TMTCAIT.
The driver GUIMONCMDOCOE was developed to test every function of the
LMONCMDOCOE. Two simulators of the TM and TC interfaces of the AIT baseband
equipment (SIMCMDLITGS e SIMMONLITGS) were created in order to allow testing in
the development environment. In addition to these testing tools, two other applications
that are part of SATCS were used. The OPDBEditor application, that allows editing the
Operation database, and the PARConsultaDB application, used to query the Historic
database. CBERS3 telemetry and telecommand parameters were inserted into the
Operation database using the OPDBEditor application. The configuration of these
parameters in the database were enough to process telemetry and code telecommands
without any software modifications in the modules responsible for coding/decoding data
structures. The module EndtoEndComm, that was modified to comply with
SATCS_TMTC_CBERS2B product, was totally reused since this part of the CBERS3
ground-board protocol is the same as the CBERS2B.

LMONCMDOCOE.dll

PARConsultaDB.exe

OPDBEditor.mde GUIMONCMDOCOE.exe

SIMCMDLITGS.exe

SIMMONLITGS.exe

HistoricDB

OperationDB

TMTCAIT

 Figure 5 TMTCAIT Test Environment.

In April 2009, a first version of TMTCAIT was successfully tested in the AIT environment
of the CBERS3 engineering model in China. Since the AIT team did not yet have
software to access LMONCMDOCOE, the TMTCAIT test environment was taken to
China where the TM and TC simulators were replaced by the actual equipment. Besides
that, a telemetry viewer application developed for the validation of the Monitoring
framework was used to visualize the telemetry values during the tests. The major
adjustments that were made related to telemetry parameters in the database in order to
correct faulty data. A small modification in the CMDGSComm module code was also
performed due to a misunderstanding concerning the telecommand interface of the AIT
baseband equipment.

American Institute of Aeronautics and Astronautics

10

At this point the DSS and AIT teams are reassessing the functions made available in
the first version of LMONCMDOCOE in order to change some functions and include
some others to better comply with the requirements of the AIT system.

TCAOCSViewer

Problem Domain

Commanding

User Viewer

Operation

Command

Subsystem

 Figure 6. CBERS3AOCSTC Logical Architecture .

IV. CBERS3AOCSTC

The Commanding and Monitoring frameworks were also designed to allow the
possibility of creating applications, by selecting a subset from the framework modules,
in order to help satellite experts during the testing phase of their subsystems. This could
also be verified during the CBERS3 engineering model tests in China. The development
and testing of the satellite AOCS subsystem is under the Chinese team responsibility
but Brazilian experts need to monitor it. Since AOCS command format was changing,
the Brazilian team was spending considerable time manually decoding the binary files
provided for testing and confirming their contents. Thus, it was realized that an
application based on the frameworks could be created to decode the files in order to
save them time.

The software product CBERS3AOCSTC was then created to help the AOCS subsystem
experts. This application allows decoding binary files of AOCS commands and
presenting the values of their parameters to the user. Figure 6 presents
CBERS3AOCSTC logical architecture with its User Viewer and Subsystem layers and
the Operation database. The User Viewer layer was implemented, through an user
interface called TcAocsViewer which displays the decoded contents of the binary files
and also allows the user to create reports. The subsystem layer, which is composed
only of the Command module of the Commanding framework, is responsible for
decoding the AOCS command. This tool was developed and tested in Brazil and sent to
Brazilian experts in China, along with OPDBEditor tool to allow that the Brazilian experts
could themselves change the Operation database whenever this was necessary.

American Institute of Aeronautics and Astronautics

11

The major work was concentrated on the Operation database configuration by inserting
data to describe the structures and parameters that compose the AOCS telecommands.
It took 33 man-hours to prepare the database and 10 man-hours to code the graphical
interface.

Due to the speed at which the product was developed and the good results achieved
by reducing the time to monitor the AOCS tests, other subsystems experts were
interested in other applications that could be developed to help them in coding and
decoding their data structures.

V. DSSCOP1CTX

Since the Amazonia satellite, in development by INPE, will use the CCSDS protocol and
considering that the DSS team has no experience in this protocol, it was decided to
develop a software product, to study it. In this study the Cortex-COP1 software and the
CORTEX baseband equipment were used. The software product DSSCOP1CTX was
developed for this purpose. It can be configured for both Cortex-COP1 remote
controlling and monitoring (data control) and sending directives and telecommands
(telecommand data flow).

The DSSCOP1CTX logical architecture, including its User Viewer layer, Operation and
Historic databases, as well as the customized Subsystem layer, is presented in Figure
7. In the User Viewer layer a graphical user interface was implemented called
COP1CTXViewer to allow the stimulation of the Cortex-COP1 communication interface
protocol. The following frameworks modules were used: Command, Transmission,
EndtoEndComm, CMDGSComm, ProcParamServer, MONGSComm and ProcParam.
Modules, whose rectangles in Figure 7 are dotted, had to be modified to implement new
requirements of the Cortex-COP1 communication interface and CCSDS COP1
protocols.

New classes to handle the telecommand data flow and the data control interfaces of the
software Cortex-COP1 were added to CMDGSComm module. The class used to create
the communication objects of this module, implemented according to the Factory design
pattern, was modified in order to create the new objects of these communication
classes. Asynchronous events generated by the Cortex-COP1 (Alert Indication and
Additional Information) were managed by adding their handling to the class responsible
to handle asynchronous events. The design of this event handling class uses the
Abstract/Observer design pattern. This caused changes in the Transmission module
because it is responsible to instantiate a concrete Observer class which inherits from
the abstract observer class defined in the module CMDGSComm in order to handle
these new events.

American Institute of Aeronautics and Astronautics

12

CMDGSCommTransmission

CommunicationProblem Domain

MONGSComm

ProcParamServer

ProcParam

Communication Problem

Domain

Commanding Monitoring

User Viewer

Operation Historic

Command EndtoEndComm

Subsystem

COP1CTXViewer

Figure 7. DSSCOP1CTX Logical Architecture.

Classes responsible for processing the CCSDS Packet and Segment layers as well as
the classes to process communication protocol layers of the software Cortex-COP1
were added to the EndtoEndComm module.

In the MONGSComm module a class was added for implementing the client
communication protocol interface of the monitoring port of the Cortex-COP1 software. In
order to decode telemetry frame parameters, including CLCW parameters, and make it
easier to monitor the tests, other classes were added to this module for implementing
the client communication protocol interface of the telemetry port of the CORTEX TM.

An Operation database instance was created to describe data structures and
parameters of Cortex-COP1 remote command&monitoring data messages, COP1
directives and telecommands.

The software infrastructure prepared for studying Cortex-COP1 software and CCSDS
COP1 protocol is presented in Figure 8. Two instances of COP1CTXViewer were used
to configure the tests. One instance (RMRCAPP) was used to monitor and control the
Cortex-COP1 software. The other (TCAPP) was used to test the telecommand data flow
interface of the Cortex-COP1 software. Both instances used the same Operation and
Historic databases. Two simulators were developed to simulate the Cortex equipment.
The SIMCMDCTXGS application simulates telecommand functions and the
SIMMONCTXGS application simulates telemetry functions generating telemetry frames
with CLCW for the Cortex-COP1 software. Two instances of the VisMonTReal
application were also used. This application allows receiving, monitoring and visualizing
remote monitoring parameters. One instance (RMAPP) was used to visualize Cortex-
COP1 remote parameters and the other (TMAPP) to visualize telemetry parameters
generated by SIMMONCTXGS. The last and most important element of the test
environment was the Cortex-COP1 software that was the object under study. It
interfaces with DSSCOP1CTX and the simulators. Besides the OPDBEditor and

American Institute of Aeronautics and Astronautics

13

PARConsultaDB applications, already described in chapter IV, were used to prepare the
Operation database and query historic data stored during the tests.

The effort to implement and test the DSSCOP1CTX Data Control version was 113 man-
hours, split into 85 man-hours for designing and implementation, and 28 man-hours for
testing execution. To implement and test the DSSCOP1CTX Telecommand Data Flow
version took 164 man-hours, where 99 man-hours were spent in designing and
implementation, and 65 man-hours for testing execution. A set of test cases were
elaborated for stimulating the Cortex-COP1 monitoring and control interface and also its
command data stream port. These test cases aimed to verify all possible data
messages exchanged with the Cortex-COP1 software and part of the CCSDS COP1
protocol.

If creating a tool for studying the Cortex-COP1 software was a quick and efficient
process the credit has to be given to the good qualities provided by the Commanding
and Monitoring frameworks and to some of their design characteristics: (i) it was
possible to comply with most of the requirements by inserting data in the Operation
database (metadata); (ii) the use of design patterns in the design of its modules makes
it easy to change the code whenever it is necessary; (iii) and its testing infrastructure
and its validation process reduce the effort for validating its customizations. In the next
step to conclude these studies the simulators will be replaced by the Cortex equipment
and the test case suit reapplied.

DSSCOP1CTX

COP1

TC Port

M
o

n

P
o

rt

Ctrl Port

SIMCMDCTXGS SIMMONCTXGS

COP1CTXViewer.exe

(TCAPP)

COP1CTXViewer.exe

(RMRCAPP)

OperationHistoric

TC Port TM Port

OPDBEditor.mdePARConsultaDB.exe

VisMonTReal.exe

(RMAPP)

VisMonTReal.exe

(TMAPP)
C
LT

U
s

C
LC

W

Figure 8 DSSCOP1CTX Sw Infrastructure.

American Institute of Aeronautics and Astronautics

14

VI. Conclusion

Writing this paper was very gratifying because the results obtained with the
development of three software products (TMTCAIT, CBERS3AOCSTC and
DSSCOP1CTX) demonstrated that the proposed goals outlined at the beginning of
SATCS project have been achieved. There was a high level of software reuse and a
lower cost of development.

The development and testing of TMTCAIT product proved that the commonality
between AIT and flight operation phases is possible, at least through the use of a
unique telemetry processing and telecommand transmission and a single Operation
database. Therefore, at the end of the AIT phase, the Operation database can be
simply transferred to the operation system without the need to edit all telemetry and
telecommand parameters. This will save a lot of work for the operation team and the
Operation database will be more reliable.

Because the CBERS3AOCSTC product aroused the interest of other satellite
subsystem experts, one can foresee the use of frameworks to quickly and efficiently
create small tools to help them. Since the major complexity to create these tools is
related to the correct database preparation, an editor has been developed. It was
designed to make it easier for the database to be updated by users.

The good results obtained from the DSSCOP1CTX development to study the CCSDS
COP1 protocol and the Cortex-COP1 software proved that the logical architecture
designed for the frameworks offers great flexibility to create applications for new
communication protocols and new data structures without any major coding impacts.
The changes are restricted to a small group of classes. Most of new requirements are
met by the correct configuration of the Operation database.

The next software product to be developed will be a tool to help in the testing of the
ACDH (AOCS + OBDH) subsystem that has been developed for the Amazônia satellite.
This satellite will use the CCSDS protocol and the PUS (Packet Utilization Standard).
This software will offer an interface to the test control system to allow telecommand
transmission, and telemetry reception, processing and visualization. This software will
be developed based on the TMTCAIT and DSSCOP1CTX products. The new elements
are the implementation of the PUS protocol functions and of the interface to the test
control system.

American Institute of Aeronautics and Astronautics

15

Acknowledgments

Authors would like to thank all the members of the DSS software team since without
everyone’s dedication the results presented in this paper would not have been
achieved. Special thanks to Leandro Toss Hoffmann who had an important role in
coding frameworks modules.

References

Cardoso, P. E.; Barreto, J. P.; Dobrowolski, K. M., “A Ground Control System for
CBERS 3 and 4 Satellites,” 9th International Conference on Space Operations, AIAA,
Rome, Italy, 2006

Cardoso, P. E., Barreto, J. P.; Cardoso, L. S., Hoffmann, L.T., “Using Design Patterns,
Components and Metadata do design the Command and Monitoring Frameworks of the
INPE’s Satellite Control System”, 10th International Conference on Space Operations,
AIAA, Heidelberg, Germain, 2008

Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design Patterns: Elements of
Reusable Object-Oriented Software, 1st ed., Addison-Wesley, Reading, Massachusetts,
1995, pp. 395.

Sommervile, I., Software Enginnering, 6th ed., Addison-Wesley, Harlow, England, 2001,
pp. 310-318.

Johnson, R.; Wolf, B., “Type object,” Pattern languages of program design 3, edited by
R. C. Martin, D. Riehle and F. Buschmann, Addison-Wesley, Reading, Massachusetts,
1998, cap. 4, p. 47-66.

